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Abstract By using the definition of �-convergence for vector valued functions given in
Oppezzi and Rossi (Optimization, to appear), we obtain a property of infimum values of the
�-limit. By generalizing Mosco convergence to vector valued functions, we also obtain, in
the convex case, the extension of some stability results analogous to the ones in Oppezzi and
Rossi (optimization, to appear), when domain and value space are infinite dimensional.

Keywords Vector optimization · Variational convergence · Stability of minima

Mathematics Subject Classification (2000) 49J45 · 49K40 · 90C29

1 Introduction

In [12] we introduced a definition of convergence for sequences of functions whose values
lie in a topological vector space partially ordered by a closed convex cone C . We call it �C -
convergence due to its analogy with the scalar case. For this type of convergence we proved
a number of important general properties such as sequential characterization, lower semi-
continuity of the �C -limit and others well known in the scalar case (see [4] for an extensive
treatment).

In the above mentioned paper we also obtained a variational property for a sequence (xn)

of εn-minimizers in the infinite dimensional case. However, in order to prove stronger results
in the case of sequences of convex functions, analogous to the ones given in [10], we confined
ourselves to finite dimensional spaces.
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In the general context of �C -convergence here we give a unilateral variational property
of infimum values of the �-limit in Theorem 3.3. Here we obtain an extension to the infinite
dimensional case of some results which hold in the convex case, thanks to a stronger defini-
tion of convergence, which in the case of scalar functions reduces to the well known Mosco
convergence.

As a preliminary result we get the strong continuity and the weak lower semicontinuity
of C-convex functions, which are upper bounded on bounded sets.

In [11], Example 3.4, it was shown that if the ordering cone does not have a sequentially
weakly compact base then Mosco convergence of sequences (An), even in separable Hilbert
spaces, doesn’t imply that minimum points in An approximate minimum points of the limit.
So, in order to get that minimum values of the limit function f of the sequence ( fn) are strong
limits of minimum values for fn we assume the cone has a sequentially weakly compact base
and the images of fn satisfy the domination property.

Another difficulty due to the infinite dimension of the domain, arises in the proof of
boundedness of sublevel sets. To address this we use the condition of recessive compactness.
This sort of compactness was first introduced and discussed in [9] and in [8].

Moreover, in our framework we consider domains which vary with each element of the
converging sequence ( fn). So, among preliminary results, we prove a lemma about the bound-
edness of the union of sublevel sets of fn under a particular assumption on the sequence of
domains, which is a generalization of recessive compactness to the case of a set sequence.

In this paper the assumption that the ordering cone has nonempty interior plays a crucial
role. It is well-known that in the infinite dimensional case the nonnegative orthant of a great
number of frequently used spaces has empty interior, so that our assumption appears rather
restrictive. However it allows us to obtain several stability results analogous to the finite
dimensional case.

2 Preliminaries and definitions

As a general assumption we shall denote by X a topological space and by Y a topological
vector space endowed with a filter of neighborhoods of 0. More structural properties on X
and Y will be precisely specified when necessary.

Definition 2.1 A set C ⊂ Y is a pointed cone if

• λC ⊂ C, ∀ λ ≥ 0
• (cl C) ∩ (−cl C) = {0};
it is a convex pointed cone if additionally

• C + C ⊂ C .

Moreover we denote by int C the interior of C and Co = C \ {0}.
From now on we assume Y to be an ordered topological vector space with the partial order

given as follows: y, y′ ∈ Y , we write

y < y′ iff y′ − y ∈ Co,

y ≤ y′ iff y′ − y ∈ C,

where C is a pointed convex cone with int C �= ∅.
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Definition 2.2 (see [13] Ch. 2, Proposition 1.3) If Y is an ordered topological vector space
with positive cone C and topology τY , we say that C is normal with respect to τY iff there
exists a neighborhood basis W of the origin 0 consisting of sets V for which

0 ≤ y′ ≤ y ∈ V implies y′ ∈ V .

Definition 2.3 If A ⊂ Y , b ∈ Y is said to be a C-minorant for A iff
(b − Co) ∩ A = ∅. We define

µC (A) = {b ∈ Y : b is a C-minorant for A}.
If µC (A) �= ∅, let

infC A := {b ∈ µC (A) : (b + Co) ∩ µC (A) = ∅}.
If A �= ∅, an element of the set

minC A := A ∩ infC A

is said to be a minimum for A or a Pareto (minimal) efficient point for A.
We call b ∈ Y a weak C-minorant for A if

(b − int C) ∩ A = ∅
and we denote by WµC (A) the set of all weak C-minorants of A.
Moreover, if WµC (A) is nonempty, we define the set of weak C-infima of A as:

W infC A := {b ∈ WµC (A) : (b + int C) ∩ WµC (A) = ∅} .

We say that b ∈ A is a weak C-minimum for A or a weakly Pareto (minimal) efficient point
for A, if b ∈ WµC (A) and we denote the set of such elements by W minC A.

Now we recall some well known concepts in vector optimization theory.

Definition 2.4

(i) If f : X → Y, α ∈ Y we denote f α = {x ∈ X : f (x) ≤ α}.
(ii) (see e.g. [1]) Let Z be a vector space and E ⊂ Z . The recession cone of E is the set:

0+(E) := {d ∈ Z : a + td ∈ E ∀ a ∈ E, ∀ t ≥ 0}.

Definition 2.5 (see [7] Ch. 1, Definition 6.1) Let X be a topological vector space, f : X →
Y . We say that f is a C-convex function if for every x1, x2 ∈ X, x1 �= x2 and for every
λ ∈]0, 1[ it results

f (λx1 + (1 − λ)x2) ∈ λ f (x1) + (1 − λ) f (x2) − C.

We say that f is a strictly C-convex function if in the above condition C is replaced by
int C .

Definition 2.6 Let f : X → Y and E ⊂ X . The set of efficient points of E for f is
defined as

Eff (E, f ) := {x ∈ E : f (x) ∈ minC f (E)}.
In [12] we introduced a definition of �C -convergence for vector valued functions, which,

when X is first countable, can be given as follows (see [12], Proposition 2.4).
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Definition 2.7 Let fn, f : X → Y, n ∈ IN. We assume X to satisfy the first axiom of

countability. We say that ( fn)n∈IN �C -converges to f and we denote fn
�C→ f iff

(a) For every x ∈ X there exists in X a sequence (xn)n∈IN converging to x such that
fn(xn) → f (x);

(b) For every x ∈ X, xn → x, ε ∈ int C there exists kε,x ∈ IN such that fn(xn)− f (x)+
ε ∈ C for every n ≥ kε,x .

We recall the notion of Mosco and Kuratowski convergence in the sequential form and
we specify that if X is a topological vector space we adopt the usual notation xn ⇀ x , when
the sequence (xn)n∈IN in X weakly converges to x ∈ X .

Definition 2.8 Let X be a first countable topological vector space, An, A⊂ X, we introduce
the following notations:

s−lim inf An = {x ∈ X : ∃ xn → x, such that xn ∈ An ∀ n}

s−lim sup An = {x ∈ X : ∃ (nk)k∈IN, ∃ xk ∈ Ank such that xk → x}

w−lim sup An = {x ∈ X : ∃ (nk)k∈IN, ∃ xk ∈ Ank such that xk ⇀ x}
and we say that
• the sequence (An)n∈IN converges to A in the sense of Mosco iff

s−lim inf An = w−lim sup An = A,

and we denote A by M−lim An ;
• the sequence (An)n∈IN converges to A in the sense of Kuratowski iff

s−lim inf An = s−lim sup An = A

and we denote A by K −lim An .

Now we introduce a stronger kind of convergence with variable domains in order to obtain
variational results analogous to the ones in [12] and [10] for the case of infinite dimensional
space of values. Such convergence coincides with the well known Mosco convergence of
functions in the case where the domain is fixed.

Definition 2.9 Let X be a first countable topological vector space,
fn, f : X → Y, An, A ⊂ X, we say that the sequence

(
fn|An

)
is MC -convergent to

f|A ( fn|An

MC→ f|A) iff

• A = M−lim An

• ∀ x ∈ A ∃ (xn)n∈IN, xn ∈ An, xn → x and fn(xn) → f (x)

• ∀ x ∈ A, xn ⇀ x, xn ∈ An and every ε ∈ int C ∃ kε,x ∈ IN such that fn(xn)− f (x)+
ε ∈ C ∀ n ≥ kε,x

3 Variational properties of �-convergence and stability in the convex case

We begin with a variational property which, under a suitable domination assumption, requires
only the �C -convergence.
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Definition 3.1 We say that the interior domination property holds for a set A ⊂ Y, A �= ∅, if

A ⊂ W infC A + (int C ∪ {0}).
Remark 3.2 We recall that a subset A of Y is said to satisfy the domination property (see
e.g. [7]) iff for every a ∈ A there exists a′ ∈ min A such that a ∈ a′ + C .

If Y ⊃ A �= ∅, the interior domination property always holds when Y is finite dimensional
(see [14] Corollary 3.1 ), so it is weaker than the domination property.

Theorem 3.3 Let X be a topological space and Y a topological vector space ordered by a
closed convex pointed cone C with int C �= ∅ and fn, f : X → Y, f = �C − lim fn.

We assume that W infC fn(X) �= ∅ and that the interior domination property holds for
fn(X) for every n ∈ IN. Then for each ȳ ∈ W infC f (X), for each ε ∈ int C there exists
nε ∈ IN with the property

∀ n ≥ nε ∃ yn ∈ W infC fn(X), yn < ȳ + ε.

Proof From Definition 2.3 there exists x ∈ X such that f (x) < ȳ + ε

2
.

By Definition 2.7 there exists a sequence (xn)n∈IN converging to x and nε ∈ IN such that

∀ n ≥ nε f (x) + ε

2
> fn(xn).

Due to the interior domination property there exist yn ∈ W infC fn(X) and ε′ ∈ int C ∪ {0}
satisfying fn(xn) = yn + ε′.
Hence yn ≤ fn(xn) < f (x) + ε

2
< ȳ + ε. ��

From now on we assume X, Y to be normed spaces.
In the sequel we need a result on continuity for convex functions which is based on the
following definition.

Definition 3.4 We say that f : X → Y is locally upper bounded iff for any x ∈ X there
exists a bounded neighborhood U of x and there exists yU ∈ Y such that

yU − f (x ′) ∈ C ∀ x ′ ∈ U.

Theorem 3.5 Let C be a closed convex pointed cone which is normal with respect to the
norm topology. If f : X → Y is a C-convex locally upper bounded function, then f is
continuous.

Proof The proof is analogous to the one of [5] Lemma 2.1, Ch. 1. We give it for sake of
completeness. Without loss of generality we can prove the continuity of f in x̄ = 0 assuming
also f (0) = 0. Let V be a ball of center in the origin and yo ∈ Y such that

f (x) ≤ yo ∀ x ∈ V

We consider ε ∈ IR, 0 < ε < 1 and x ∈ εV . Since
x

ε
, − x

ε
∈ V , due to C-convexity of f

we get

f (x) ≤ (1 − ε) f (0) + ε f (
x

ε
) = ε f (

x

ε
) ≤ εyo

0 = f (0) ≤ 1

1 + ε
f (x) + ε

1 + ε
f (− x

ε
),

and so f (x) ≥ −ε f (− x

ε
) ≥ −εyo.
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Then we have obtained

−εyo ≤ f (x) ≤ εyo ∀ x ∈ εV .

Since C is normal by [13], Proposition 1.7 Ch. 2, there exists a constant γ > 0 such that
‖ f (x) + εyo‖ ≤ γ 2ε‖yo‖.
Therefore ‖ f (x) − f (0)‖ ≤ (1 + 2γ )ε‖yo‖ which implies the continuity of f in 0. ��
Corollary 3.6 Let C be a closed convex normal (with respect to the norm topology) cone.
If f : X → Y is C-convex and locally upper bounded, then f is sequentially lowerC -semi-
continuous with respect to the weak convergence (see [3]), i.e.

f −1(y − C) is sequentially closed in the weak topology ∀ y ∈ Y.

Proof Clearly f −1(y −C) is convex and strongly closed thanks to continuity of f (Theorem
3.5). Hence the assertion follows from Mazur’s Lemma. ��
Proposition 3.7 Let E ⊂ X be a convex set and f : X → Y a C-convex function. Then

(a) f (E) + C is a convex subset of Y ;
(b) if f is strictly C-convex then

{x ∈ E : f (x) ∈ W minC f (E)} = Eff(E, f ).

Proof The assertion a) is obvious and b) is proved in [7] Ch. 2, Proposition 5.13. ��
Proposition 3.8 Let C be a closed convex pointed cone which is normal with respect to the
norm topology. Let f : X → Y be a C-convex locally upper bounded function. If a, b ∈ Y
and f a �= ∅, f b �= ∅ then 0+( f a) = 0+( f b).

Proof Thanks to Theorem 3.5 the proof is as the one of [10], Proposition 2.2. ��

In virtue of the above Proposition we may denote by H f the recession cone of any non-
empty sublevel set of a C-convex function.

We give now a definition which, as we observe in the next remark, in the case of a normed
space, is analogous to the one given by Luc in [8] Def. 2.1 for the general case of Hausdorff
topological vector spaces.

Definition 3.9 A set A ⊂ X is said to be recessively compact if for every unbounded
sequence (an)n∈IN of elements of A there exist a subsequence (ank ), a sequence (tk) of
positive numbers, tk → 0 and ā ∈ X \ {0} such that tk ank ⇀ ā.

Remark 3.10 We recall to the reader the original definition given by Luc in [8].
“ Let (X, θ) be a real Hausdorff topological vector space.

A nonempty set A ⊆ X is said to be recessively compact (or r -compact) if for every
ρ-unbounded net {aα}α∈I ⊆ A there is a subnet {aβ}β∈I ′ ⊆ {aα}α∈I and positive numbers
tβ converging to 0 such that {tβaβ}β∈I ′ converges to some nonzero limit.”

We observe that such definition coincides with ours if X is a normed space and θ = w is
the weak topology.

In fact in the case of a normed space an unbounded sequence (an)n∈IN is also ρ-unbounded
as in Definition 2.1 of [8], which means that there exists a neighborhood U of the origin such
that lim sup ρU (an) = +∞, where ρU (x) = inf{t > 0 : x ∈ tU }.

To see this, assume (an)n∈IN to be norm unbounded; if it were bounded in the weak
topology, by [6] §15, n.6- (3) it would follow that αn an ⇀ 0 whenever αn → 0. But this is

impossible if we choose αn = 1√‖an‖ .
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Sufficient conditions for recessive compactness are given in [8] Proposition 2.2.

Proposition 3.11 Let E ⊂ X be a closed convex recessively compact set,
f : X → Y a locally upper bounded C-convex function. The following assertions are
equivalent:

(i) 0+(E) ∩ H f = {0};
(ii) f a ∩ E is bounded for every a ∈ Y .

Proof It is clear that (i) is a consequence of (ii).
Conversely by contradiction we assume the existence of a sequence xn ∈ f a∩E , ‖xn‖ → ∞.
Due to recessive compactness of E , we may consider x̄ ∈ X \ {0} and a sequence (tk)k∈IN
in IR+, tk → 0 such that tk xnk ⇀ x̄ , where (xnk ) is a subsequence of (xn).

We prove that in such a case x̄ ∈ 0+(E) ∩ H f . In fact if x ∈ f a ∩ E it results, when
t ≥ 0 and k is sufficiently large, (1 − t tk)x + t tk xnk ∈ f a ∩ E . On the other hand
(1 − t tk)x + t tk xnk ⇀ x + t x̄ and, by continuity and convexity of f , the set f a is closed.
Therefore x +t x̄ ∈ E ∩ f a , which concludes the proof, because 0+(E ∩ f α) ⊂ 0+(E)∩ H f .

��
In order to study MC -convergent sequences we give the following definition which coin-

cides with Definition 3.9 in the case of a single set.

Definition 3.12 Let (Ek)k∈IN be a sequence of subsets of X . We say that (Ek)k∈IN is a reces-
sively compact sequence iff for every subsequence (Enk )k∈IN and every norm unbounded
sequence (xk)k∈IN, xk ∈ Enk ∀ k ∈ IN there exist a further subsequence (xk j ) j∈IN, a
sequence (t j ) of positive numbers, t j → 0 and x̄ ∈ X \ {0} such that t j xk j ⇀ x̄ .

Remark 3.13 The following assertions are straightforward.

• If X is a normed space, (Ek)k∈IN is a recessively compact sequence and X ⊃ E =
M − lim Ek , then E is recessively compact.

• A sufficient condition for (Ek)k∈IN to be a recessively compact sequence is that the set⋃

k≥k̄

Ek is recessively compact for some k̄ ∈ IN.

Lemma 3.14 Let En, E ⊂ X be closed convex sets, (En)n∈IN a recessively compact se-
quence and E = M − lim En. Let fn, f : X → Y be C-convex locally upper bounded

functions such that fn |En

MC→ f|E . Moreover we assume 0+(E) ∩ H f = {0}.
Then 0+(En) ∩ H fn = {0} if n is sufficiently large.

Proof By contradiction if the assertion is false, there exists a subsequence dk ∈ 0+(Enk ) ∩
H fnk

, ‖dk‖ → +∞. If a ∈ E is given, let ak ∈ Enk , k ∈ IN be such that ak → a. Since
ak + dk ∈ Enk , thanks to recessive compactness, possibly for a subsequence, there exist
αk → 0, αk > 0 and x̄ ∈ X \ {0} such that αk(ak + dk) ⇀ x̄ . Then, if t ∈ IR+ is given,
we have ak + αk t dk ⇀ a + t x̄ and having ak + αk t dk ∈ Enk , it follows that a + t x̄ ∈ E .

Now, by arbitrariness of a and t we get x̄ ∈ 0+(E).
Let us prove that x̄ ∈ H f .
By Definition 2.9, if x ∈ E there exist xk ∈ Enk , xk → x such that fnk (xk) → f (x).

Let α = f (x), ε ∈ int C , if αk and dk are chosen as before, in virtue of Proposition 3.8 it
follows that dk ∈ 0+( f α+ε

nk
), so xk + αk t dk ∈ f α+ε

nk
for large k ∈ IN.

On the other hand we have xk + αk t dk ⇀ x + t x̄ and, by MC -convergence hypothesis,

f (x + t x̄) − ε < fnk (xk + αk t dk) < α + ε

for k large enough. By arbitrariness of ε we conclude that x̄ ∈ 0+( f α) ��
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Lemma 3.15 Under the assumptions of Lemma 3.14, if α ∈ Y is such that f α ∩ E �= ∅
there exists n̄ ∈ IN such that

⋃

n≥n̄

(En ∩ f α
n ) is bounded.

Proof By contradiction we suppose
⋃

n≥n̄

(En ∩ f α
n ) to be unbounded for any n̄ ∈ IN. Then

there exists an unbounded sequence xk ∈ Enk ∩ f α
nk

and by recessive compactness of the
sequence (En), for a further subsequence, there exist x̄ �= 0, αk ∈ IR+, αk → 0 such that
αk xk ⇀ x̄ . Let’s now consider x ′ ∈ E, x ′

k ∈ Enk such that x ′
k → x ′ and fnk (x ′

k) → f (x ′).
Then, if t > 0, we obtain:

(1 − tαk)x ′
k + tαk xk ⇀ x ′ + t x̄,

so x̄ ∈ 0+(E).
Moreover we take x ∈ f α ∩ E, x ′′

k ∈ Enk , x ′′
k → x such that fnk (x ′′

k ) → f (x); then

(1 − tαk)x ′′
k + tαk xk ⇀ x + t x̄ .

Thanks to MC -convergence for each ε ∈ int C there exists kε such that

f (x + t x̄) − ε ≤ fnk ((1 − tαk)x ′′
k + tαk xk)

≤ (1 − tαk) fnk (x ′′
k ) + tαk fnk (xk) ≤ (1 − tαk) fnk (x ′′

k ) + tαk α.

The right hand side in the last inequality converges to f (x) which is majorized by α, so, by
arbitrariness of ε it follows that x + t x̄ ∈ f α . Then we conclude that

x + t x̄ ∈ f α ∩ E ∀ x ∈ f α ∩ E,∀ t > 0

which implies the unboundedness of f α ∩ E in contradiction with Proposition 3.11. ��
Lemma 3.16 Let A ⊂ Y be a bounded set and C a cone in Y such that int C �= ∅. Then
there exists ȳ ∈ C such that ȳ − A ⊂ C.

Proof Let ε ∈ int C and B(ε, δ) ⊂ C . If r ∈ IR+ and B(0, r) ⊃ A, we choose ȳ = λε with

λ > r/δ in order to have {ε + x

λ
: x ∈ B(0, r)} ⊂ B(ε, δ). Hence B(ȳ, r) ⊂ λB(ε, δ) ⊂ C

and consequently −C ⊃ −B(ȳ, r) = B(−ȳ, r) = B(0, r) − ȳ. Then ȳ − A ⊂ C. ��
Theorem 3.17 Let En, E ⊂ X be closed convex sets, (En)n∈IN a recessively compact
sequence and E = M − lim En. Let fn, f : X → Y be C-convex locally upper bounded

functions such that fn |En

MC→ f|E . Moreover we assume 0+(E) ∩ H f = {0}.
Then f (E) + C = M − lim( fn(En) + C).

Proof We begin to prove the inclusion f (E) + C ⊂ s − lim inf( fn(En) + C).
Let y ∈ f (E) + C and x ∈ E such that f (x) ≤ y. By definition of MC -convergence

there exists a sequence (xn)n∈IN, xn ∈ En, xn → x such that fn(xn) → f (x).
Then if ε ∈ int C , there exists kε ∈ IN such that fn(xn) < y +ε ∀ n ≥ kε, so it follows

that y + ε ∈ fn(En) + C ∀ n ≥ kε .
Hence y + ε ∈ s − lim inf( fn(En) + C), but this set is closed and, by arbitrariness of ε,

it results y ∈ s − lim inf( fn(En) + C).
Now let us prove the inclusion w − lim sup( fn(En) + C) ⊂ f (E) + C.

We consider y ∈ Y such that for a suitable subsequence (nk)k∈IN there exists yk ∈
fnk (Enk ) + C , yk ⇀ y. By previous lemma there exists α ∈ C such that yk ≤ α for every
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k ∈ IN. If we take xk ∈ Enk such that fnk (xk) ≤ yk we obtain xk ∈ Enk ∩ f α
nk

for each k ∈ IN.
Thanks to Lemma 3.15 the sequence (xk) is bounded, hence at least for a subsequence, we
get xk ⇀ x ∈ E . In virtue of Definition 2.9 for every ε ∈ int C there exists hε ∈ IN such
that

f (x) − ε < fnk (xk) ≤ yk ∀ k > hε.

By closedness and convexity of C it results

y − f (x) + ε = lim(yk − f (x) + ε) ∈ C

and by arbitrariness of ε we conclude that y − f (x) ∈ C , i.e. y ∈ f (E) + C . ��
Lemma 3.18 Let Y be a reflexive Banach space, C a closed convex normal (with respect to
the norm topology) cone. Let E ⊂ X be a closed and convex set, f : X → Y be C-convex
and locally upper bounded. Moreover we assume that 0+(E) ∩ H f = {0}.
Then f (E) + C is closed.

Proof Thanks to Theorem 3.6 and Proposition 3.11 the proof is analogous to the one of
Lemma 2.1 in [10]. ��
Theorem 3.19 Under the hypotheses of Lemma 3.14, if we assume that:

• C has a sequentially weakly compact base,
• fn(En) satisfies the domination property for every n ∈ IN, then min f (E) ⊂ s −

lim inf(min fn(En)).

Proof By Lemma 3.14 we have 0+(En) ∩ H fn = {0} for large n. Then Lemma 3.18 ensures
that f (E) + C and fn(En) + C are closed. Clearly min(I + C) = min I for every subset
I ⊂ Y and if fn(En) satisfies the domination property the same holds for fn(En) + C . In
virtue of Theorem 3.17 we can apply Theorem 3.1 of [11], obtaining that

min( f (E) + C) ⊂ s − lim inf min( fn(En) + C),

which concludes the proof. ��
Remark 3.20 Under the assumptions of Lemma 3.14, if C has a sequentially weakly compact
base, a sufficient condition for the domination property of fn(En) is the following:

∀ n ∈ IN ∃ yn ∈ Y such that fn(En) ⊂ yn + C.

In fact thanks to Lemma 3.18, fn(En)+C is closed and “minorized” (i.e. there exists ȳn ∈ Y
such that fn(En) + C ⊂ ȳn + C), hence each “section” ( fn(En) + C)y := ( fn(En) + C) ∩
(y − C) is closed and minorized. Moreover by [2], Prop. 3.4, C is a Daniell cone because it
has a weakly sequentially compact base. Due to Lemma 3.5, Ch. 3 of [7] then ( fn(En)+C)y

is C-complete and Theorem 4.3 of [7] ensures the domination property.

Theorem 3.21 Under the assumptions of Lemma 3.14 it results

s−lim sup (W min fn(En)) ⊂ W min f (E)

Proof Let yn → y, yn ∈ W min fn(En), we prove that y − int C ∩ f (E) = ∅.
By contradiction, if ε ∈ int C and y − ε = f (x), x ∈ E , by MC -convergence there exists a
sequence (xn)n∈IN strongly convergent to x, xn ∈ En such that fn(xn) → f (x).
Therefore we can take n̄ε ∈ IN such that

fn(xn) < y − ε

4
, y − ε

8
< yn ∀ n > n̄ε.

This gives a contradiction, because it implies fn(xn) ∈ yn − int C . ��
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Theorem 3.22 In addition to the assumptions of Theorem 3.19, we also suppose f to be
strictly C-convex. Then

minC f (E) = K −lim minC fn(En)

Proof It clearly follows from Theorem 3.19 and Theorem 3.21, because by strict convexity
min f (E) = W min f (E). ��
Theorem 3.23 Under the hypotheses of the previous theorem it follows that

Eff(E, f ) = M − lim Eff (En, fn)

Proof Thanks to Lemma 3.15 and definition of MC -convergence the proof is the same as
that of Theorem 4.15 in [12]. ��
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